Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Infect Dis ; 71(16): 2150-2157, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153175

ABSTRACT

BACKGROUND: Thymosin alpha 1 (Tα1) had been used in the treatment of viral infections as an immune response modifier for many years. However, clinical benefits and the mechanism of Tα1 treatment for COVID-19 patients are still unclear. METHODS: We retrospectively reviewed the clinical outcomes of 76 severe COVID-19 cases admitted to 2 hospitals in Wuhan, China, from December 2019 to March 2020. The thymus output in peripheral blood mononuclear cells from COVID-19 patients was measured by T-cell receptor excision circles (TRECs). The levels of T-cell exhaustion markers programmed death-1 (PD-1) and T-cell immunoglobulin and mucin domain protein 3 (Tim-3) on CD8+ T cells were detected by flow cytometry. RESULTS: Compared with the untreated group, Tα1 treatment significantly reduced the mortality of severe COVID-19 patients (11.11% vs 30.00%, P = .044). Tα1 enhanced blood T-cell numbers in COVID-19 patients with severe lymphocytopenia. Under such conditions, Tα1 also successfully restored CD8+ and CD4+ T-cell numbers in elderly patients. Meanwhile, Tα1 reduced PD-1 and Tim-3 expression on CD8+ T cells from severe COVID-19 patients compared with untreated cases. It is of note that restoration of lymphocytopenia and acute exhaustion of T cells were roughly parallel to the rise of TRECs. CONCLUSIONS: Tα1 treatment significantly reduced mortality of severe COVID-19 patients. COVID-19 patients with counts of CD8+ T cells or CD4+ T cells in circulation less than 400/µL or 650/µL, respectively, gained more benefits from Tα1. Tα1 reversed T-cell exhaustion and recovered immune reconstitution through promoting thymus output during severe acute respiratory syndrome-coronavirus 2 infection.


Subject(s)
COVID-19/mortality , Lymphopenia/metabolism , SARS-CoV-2/pathogenicity , Thymalfasin/metabolism , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/virology , Female , Humans , Male , Middle Aged , Retrospective Studies , Thymalfasin/genetics , Thymus Gland/metabolism
2.
Int J Mol Sci ; 22(1)2020 Dec 24.
Article in English | MEDLINE | ID: covidwho-1041240

ABSTRACT

Thymosin α1 (Tα1) is an immunostimulatory peptide for the treatment of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections and used as an immune enhancer, which also offers prospects in the context of COVID-19 infections and cancer. Manufacturing of this N-terminally acetylated 28-residue peptide is demanding, and its short plasma half-life limits in vivo efficacy and requires frequent dosing. Here, we combined the PASylation technology with enzymatic in situ N-acetylation by RimJ to produce a long-acting version of Tα1 in Escherichia coli at high yield. ESI-MS analysis of the purified fusion protein indicated the expected composition without any signs of proteolysis. SEC analysis revealed a 10-fold expanded hydrodynamic volume resulting from the fusion with a conformationally disordered Pro/Ala/Ser (PAS) polypeptide of 600 residues. This size effect led to a plasma half-life in rats extended by more than a factor 8 compared to the original synthetic peptide due to retarded kidney filtration. Our study provides the basis for therapeutic development of a next generation thymosin α1 with prolonged circulation. Generally, the strategy of producing an N-terminally protected PASylated peptide solves three major problems of peptide drugs: (i) instability in the expression host, (ii) rapid degradation by serum exopeptidases, and (iii) low bioactivity because of fast renal clearance.


Subject(s)
Adjuvants, Immunologic/pharmacokinetics , Thymalfasin/pharmacokinetics , Acetylation , Acetyltransferases/metabolism , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/pharmacology , Animals , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Female , Half-Life , Mass Spectrometry , Microscopy, Electron, Scanning , Neoplasms/drug therapy , Peptides/chemistry , Proteolysis , Rats , Rats, Wistar , Recombinant Fusion Proteins/blood , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/ultrastructure , Ribosomal Proteins/metabolism , Thymalfasin/blood , Thymalfasin/chemistry , Thymalfasin/genetics , Virus Diseases/drug therapy , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL